Abstract

We have investigated the electrical double layer (EDL) structure at an interface between ionic liquid (IL) and charged surface using molecular dynamics simulations. We show that for three different models of ILs the EDL restructuring, driven by surface charging, can be rationalized by the use of two parameters—renormalized surface charge (κ) and charge excess in the interfacial layers (λ). Analysis of the relationship between the λ and κ parameters provides new insights into mechanisms of over-screening and charge-driven structural transitions in the EDL in ionic liquids. We show that the restructuring of the EDL upon charging in all three studied systems has two characteristic regimes: (1) transition from the bulk-like (κIon = 0) to the multilayer structure (κIon ≈ 0.5) through the formation of an ionic bilayer of counter- and co-ions; and (2) transition from the multilayer (κIon ≈ 0.5) to the crowded (κIon > 1) structure through the formation of a monolayer of counter-ions at κIon = 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.