Abstract

Face anti-spoofing has become widely used due to the increasing use of biometric authentication systems that rely on facial recognition. It is a critical issue in biometric authentication systems that aim to prevent unauthorized access. In this paper, we propose a modified version of majority voting that ensembles the votes of six classifiers for multiple video chunks to improve the accuracy of face anti-spoofing. Our approach involves sampling sub-videos of 2 seconds each with a one-second overlap and classifying each sub-video using multiple classifiers. We then ensemble the classifications for each sub-video across all classifiers to decide the complete video classification. We focus on the False Acceptance Rate (FAR) metric to highlight the importance of preventing unauthorized access. We evaluated our method using the Replay Attack dataset and achieved a zero FAR. We also reported the Half Total Error Rate (HTER) and Equal Error Rate (EER) and gained a better result than most state-of-the-art methods. Our experimental results show that our proposed method significantly reduces the FAR, which is crucial for real-world face anti-spoofing applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.