Abstract

We prove that several evolution equations arising as mathematical models for fluid motion cannot be realized as metric Euler equations on the Lie group DIFF∞(𝕊1) of all smooth and orientation-preserving diffeomorphisms on the circle. These include the quasi-geostrophic model equation, cf. [A. Córdoba, D. Córdoba and M. A. Fontelos, Formation of singularities for a transport equation with nonlocal velocity, Ann. of Math. 162 (2005) 1377–1389], the axisymmetric Euler flow in ℝd(see [H. Okamoto and J. Zhu, Some similarity solutions of the Navier–Stokes equations and related topics, Taiwanese J. Math. 4 (2000) 65–103]), and De Gregorio's vorticity model equation as introduced in [S. De Gregorio, On a one-dimensional model for the three-dimensional vorticity equation, J. Stat. Phys. 59 (1990) 1251–1263].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.