Abstract

Unlike quantum correlations, the shareability of classical correlations (CCs) between two-parties of a multipartite state is assumed to be free since there exist states for which CCs for each of the reduced states can simultaneously reach their algebraic maximum value. However, when one randomly picks out states from the state space, we find that the probability of obtaining those states possessing the algebraic maximum value is vanishingly small. We explore the possibility of nontrivial upper bound by Haar uniformly generating random multipartite states and computing the frequency distribution for various CC measures, conventional classical correlators, and two axiomatic measures of classical correlations, namely the classical part of quantum discord and local work of work-deficit. We find that the distributions are typically Gaussian-like and their standard deviations decrease with the increase in number of parties. It also reveals that among the multiqubit random states, most of the reduced density matrices possess a low amount of CCs which can also be confirmed by the mean of the distributions, thereby showing a kind of restrictions on the sharability of classical correlations for random states. Furthermore, we also notice that the maximal value for random states is much lower than the algebraic maxima obtained for a set of states, and the gap between the two increases further for states with a higher number of parties. We report that for a higher number of parties, the classical part of quantum discord and local work can follow monogamy-based upper bound on sharability while classical correlators have a different upper bound. The trends of sharability for classical correlation measures in random states clearly demarcate between the axiomatic definition of classical correlations and the conventional ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.