Abstract

Regulation of the microM-calcium-requiring form of calpain (mu calpain) was studied in SH-SY-5Y human neuroblastoma cells. Immunoblot analysis demonstrated that the vast majority of mu calpain is localized within cytosolic pools. Calpain activation was monitored as a function of autolysis within intact cells following calcium influx from the culture medium by calcium ionophores A23187 or ionomycin, or following release of calcium from intracellular stores by thapsigargin. Within intact neuronal cells, following an influx of calcium into the cytosolic from either extracellular or intracellular sources, mu calpain is preferentially activated at the plasma membrane as evidenced by autolytic generation of faster-migrating isoforms. By contrast, similar autolytic profiles for mu calpain in membrane or cytosolic fractions following addition of calcium were observed under cell-free conditions and within cells following death due to extended ionophore-mediated calcium influx. These differential activation profiles for cytosolic mu calpain within living cells and following cellular fractionation/cell death indicate the presence of a regulatory system within neuronal cells. As in previous studies in other systems, we demonstrate the presence of a calpain activator protein. Cycloheximide treatment depleted the autolytic capacity of membrane-associated mu calpain within 4-6 hr without a corresponding decline in total mu calpain protein levels, indicating that the activator protein undergoes rapid turnover in comparison to calpain; pulse-chase radiolabeling confirmed the half-life of mu calpain to exceed 24 hr. Our data suggest that this labile protein represents a major rate-limiting step for in situ calpain activation within neuronal cells, and that, given the tremendous latent mu calpain activity within the cytosol, the interplay of the activator protein and the endogenous inhibitor calpastatin are crucial for maintaining neuronal homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.