Abstract

Genetic transformation in recA1 strains of Bacillus subtilis was studied to test the hypothesis that, in these strains, a major pathway of recombination is missing, leaving only residual transformation via a pathway specific for transduction. The two putative recombinational pathways have been hypothesized to differ in either length of synapsed regions or specificity for nucleotide sequence homology. It was found that the efficiency of transformation of recA1 cells by deoxyribonucleic acid (DNA) from the heterologous strain W23 was much lower than when a homologous donor DNA was used, the relative efficiency being different for different genetic markers. Because the frequency of recombination between linked markers is only slightly changed in recA1 recipients, and because markers of heterologous origin in DNA from intergenotic strains are not discriminated against strongly by recA1 recipients, it is concluded that neither a difference in length of synapsed DNA nor a difference in specificity for nucleotide sequence homology accounts for reduced transformation in recA1 cells. It is proposed that at some time between uptake and integration, heterologous DNA is inactivated by restriction, and that aberrant restriction of repaired regions may account for reduced transformation by homologous DNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call