Abstract

A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis using mitochondrial (A+T-rich region; mtDNA) and genomic (zen-region; nDNA) DNA was performed on 182 female individuals of Episyrphus balteatus (DeGeer), a widespread aphidophagous hoverfly with supposed migratory behaviour. Specimens originated from 13 sampling sites in six European countries. The analyses revealed 12 and 18 haplotypes, respectively, for the two DNA types, several of them with a wide distribution, although seven and eight haplotypes, respectively, occurred only in one location. In contrast to other studies on mobile insects, the genetic diversity was relatively high. However, lack of population subdivision, low genetic distances between populations, the very high gene flow rates, and the complete lack of isolation by distance suggest that E. balteatus populations are largely connected and that there is an absence of large-scale geographic structuring. These results support the hypothesis that E. balteatus is a migratory hoverfly species, capable of moving over large distances. These findings related to the seasonal migrations of this species are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call