Abstract
Chlamydia trachomatis is the most common cause of bacterial sexually transmitted infection (STI) in the USA. As an STI, C. trachomatis infections can cause inflammatory damage to the female reproductive tract and downstream sequelae including infertility. No vaccine currently exists to C. trachomatis, which evades sterilizing immune responses in its human host. A better understanding of this evasion will greatly benefit the production of anti-Chlamydia therapeutics and vaccination strategies. This minireview will discuss a single branch of the immune system, which activates in response to genital Chlamydia infection: so-called "cell-autonomous immunity" activated by the cytokine interferon-gamma. We will also discuss the mechanisms by which human and mouse-adapted Chlamydia species evade cell-autonomous immune responses in their native hosts. This minireview will examine five pathways of host defense and their evasion: (i) depletion of tryptophan and other nutrients, (ii) immunity-related GTPase-mediated defense, (iii) production of nitric oxide, (iv) IFNγ-induced cell death, and (v) RNF213-mediated destruction of inclusions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.