Abstract

AbstractRestricted Voronoi diagrams are a fundamental geometric structure used in many applications such as surface reconstruction from point sets or optimal transport. Given a set of sites V = {vk}nk=1 ⊂ ℝd and a mesh X with vertices in ℝd connected by triangles, the restricted Voronoi diagram partitions X by computing for each site the portion of X for which the site is the nearest. The restricted Voronoi diagram is the intersection between the regular Voronoi diagram and the mesh. Depending on the site distribution or the ambient space dimension computing the regular Voronoi diagram may not be feasible using classical algorithms. In this paper, we extend Lévy and Bonneel's approach [LB12] based on nearest neighbor queries. We show that their method is limited when the sites are not located on X. We propose a new algorithm for computing restricted Voronoi which reduces the number of sites considered for each triangle of the mesh and scales smoothly when the sites are far from the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.