Abstract
Conventional orthodontic treatment of vertical or anterior maxillary excess by growth modification can be problematic in children because of the high levels of patient compliance required. The purpose of this preliminary study was to investigate the use of rigid skeletal fixation to modify facial bone growth without compliance. Three 30-day old female pigs from the same litter were included in phase I. Pediatric miniplates were rigidly fixated with monocortical screws in the experimental pig to bridge the zygomaticomaxillary suture and both the frontonasal and nasomaxillary sutures, bilaterally. In the sham experimental pig, the same surgical protocol was followed, but miniplates were omitted (ie, screw placement only). In the control pig, surgery was not performed. All 3 pigs were housed and fed a normal diet under identical conditions postoperatively for 63 days; then they were killed, their right hemi-skulls were prepared for and underwent 3-dimensional coordinate landmark analysis, and en-bloc specimens from the zygomaticomaxillary, frontonasal, and nasomaxillary sutures of the left hemi-skulls underwent histologic analysis. Two 50-day-old female pigs from the same litter were used in phase II. The same experimental protocol was followed as before for the experimental pig and the sham experimental pig. Both pigs were fed a normal diet for 105 days; then they were killed, and their skulls were prepared for and underwent 3-dimensional coordinate landmark analysis. Rigid plating restricted zygomaticolacrimal suture length, maxillary bone length, nasal bone length, midfacial breadth, and frontal bone length by an average of -14% to -15% (range, -4% to -36%). No growth differences were noted between the animals in maxillary height, mid-premaxillary length, bregma-lambda length, palatal lengths, or mandibular length. Also, plating the sutures produced a clear depressed concavity in the infraorbital region, altered the alignment of the infraorbital plane lateral to the concavity, inhibited the anterior migration of the maxillary tuberosity, and resulted in raised folding on the bony surface adjacent to the zygomaticomaxillary suture. Rigidly fixating frontonasomaxillary and zygomaticomaxillary sutures inhibits growth of facial bones and might provide a means of restricting excess growth without having to rely on patient compliance. In addition, these altered growth patterns in the plated pig model produced similar and potentially homologous infraorbital features shared by living humans in comparison with ancestral fossil forms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Orthodontics & Dentofacial Orthopedics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.