Abstract
We prove the existence of a power series having radius of convergence 0, whose partial sums have universal approximation properties on any compact set with connected complement that is contained in a finite union of circles centred at 0 and having rational radii, but do not have such properties on any compact set with nonempty interior. This relates to a theorem of A. I. Seleznev.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.