Abstract

Prenatal gene transfer may enable early causal intervention for the treatment or prevention of many devastating diseases. Nevertheless, permanent correction of most inherited disorders requires a sustained level of expression from the therapeutic transgene, which could theoretically be achieved with integrating vectors. Rabbit fetuses received 8.5 x 10(6) HIV-based recombinant lentivirus particles containing the enhanced green fluorescent protein (EGFP) transgene by intrahepatic, intra-amniotic or intraperitoneal injection at 22 days of gestation. Provirus presence and transgene expression in rabbit tissues were evaluated at both 1.5 and 16 weeks post-in utero intervention by polymerase chain reaction (PCR) and reverse transcriptase-PCR, respectively. Moreover, we assessed persistence of EGFP by immunohistochemistry. Enzyme-linked immunosorbent assays confirmed the development of antibodies specific against both the viral vector and the reporter protein. Regardless of the route of administration employed, lentiviral vector-based in utero gene transfer was safe and reached 85% of the intervened fetuses at birth. However, the integrated provirus frequency was significantly reduced to 50% of that in young rabbits at 16 weeks post-treatment. In these animals, EGFP expression was evident in many tissues, including cytokeratin 5-rich basal cells from stratified and pseudostratified epithelia, suggesting that the lentiviral vector might have reached progenitor cells. Conversely, we identified the presence of immune-inflammatory infiltrates in several EGFP-expressing tissues. Moreover, almost 70% of the lentiviral vector-treated rabbits elicited a humoral immune response against the viral envelope and/or the EGFP. At two-thirds gestational age, the adaptive immune system of the rabbit appears a relevant factor limiting transgene persistence and expression following lentiviral vector-mediated in utero gene transfer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.