Abstract

The strategy of Restricted Simplicial Decomposition is extended to convex programs with convex constraints. The resulting algorithm can also be viewed as an extension of the (scaled) Topkis—Veinott method of feasible directions in which the master problem involves optimization over a simplex rather than the usual line search. Global convergence of the method is proven and conditions are given under which the master problem will be solved a finite number of times. Computational testing with dense quadratic problems confirms that the method dramatically improves the Topkis—Veinott algorithm and that it is competitive with the generalized reduced gradient method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.