Abstract

Earlier studies showed that water deficit reduces nitrogen (N) uptake and N nutrition index of grasses. So far, the main effect of water deficit on N uptake and N nutrition status was ascribed to the alteration of the transpiration-dependent transport of mineral N in the soil solution. A split-root experiment was performed to determine whether plant and/or solution water potential could alter N uptake and allocation, independently of N fluxes in the soil solution. The split-root experiment allowed to manipulate separately the water and the N status of the root environment and of the plant, by various combinations of addition of polyethylene glycol 6000 (PEG) and mineral N on half or on the entire root system. Tall fescue, Italian ryegrass and cocksfoot, known for their contrasted sensitivities to water deficit, were studied. The addition of PEG largely reduced water and N uptake of the roots on which it was applied (half or entire root system). A significant accumulation of N was observed on the roots to which PEG was added, particularly in cocksfoot and tall fescue, hypothetically contributing to the alteration of N uptake. Cocksfoot displayed a high plasticity in N allocation to leaves related to sheaths, allowing the maintenance of N concentration and therefore its N status despite the reduction in N uptake. By contrast, leaf N concentration and N status of tall fescue and Italian ryegrass was more sensitive to water deficit, similarly to observations of the effect of drought in field studies. Therefore, it is concluded that the effect of soil solution potential on N uptake and plant N allocation may also contribute to the observed effect of drought on N status of grass crops, additionally to the effect of drought on the transfer of mineral N in the soil solution to the root surface. However, the importance of this physiological effect varies among species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.