Abstract
In this paper, we introduce a ridge estimator for the vector of parameters in a linear regression model when additional linear restrictions on the parameter vector are assumed to hold. The estimator is a generalization of the well-known restricted least-squares estimator and is confined to the (affine) subspace which is generated by the restrictions. Necessary and sufficient conditions for the superiority of the new estimator over the restricted least-squares estimator are derived. Our new estimator is not to be confounded with the restricted ridge regression estimator introduced by Sarkar (Comm. Statist. Theory Methods 21 (1992) 1987).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.