Abstract

BackgroundDuring nutritional stress, reduced intake may reduce the efficacy of anabolic implants. This study was conducted to evaluate basic cellular responses to a growth promotant implant at two intake levels.MethodsSixteen crossbred steers (293 ± 19.3 kg) were used to evaluate the impact of anabolic implants in either an adequate or a restricted nutritional state. Steers were trained to individual Calan gates, and then randomly assigned to 1 of 4 treatments in a 2 × 2 factorial arrangement. Treatments consisted of: presence or absence of an anabolic growth implant (Revalor-XS, 200 mg TBA and 40 mg estradiol; IMPLANT or CONTROL) and a moderate energy, pelleted, starting cattle diet fed at either 2.0 × or 1.0 × maintenance energy (NEM) requirements (HIGH or LOW). Serum (d 0, 14, and 28) was used for application to bovine muscle satellite cells. After treatment with the serum (20% of total media) from the trial cattle, the satellite cells were incubated for 72 h. Protein abundance of myosin heavy chain (MHC), phosphorylated extracellular signal-related kinase (phospho-ERK), and phosphorylated mammalian target of rapamycin (phospho-mTOR) were analyzed to determine the effects of implant, intake, and their interaction (applied via the serum).ResultsIntake had no effect on MHC (P = 0.85) but IMPLANT increased (P < 0.01) MHC abundance vs. CONTROL. Implant status, intake status, and the interaction had no effect on the abundance of phospho-ERK (P ≥ 0.23). Implanting increased phospho-mTOR (P < 0.01) but there was no effect (P ≥ 0.51) of intake or intake × implant.ConclusionsThe nearly complete lack of interaction between implant and nutritional status indicates that the signaling molecules measured herein respond to implants and nutritional status independently. Furthermore, results suggest that the muscle hypertrophic effects of anabolic implants may not be mediated by circulating IGF-1.

Highlights

  • During nutritional stress, reduced intake may reduce the efficacy of anabolic implants

  • Bryant et al [18,19] reported no effects of implants on IGF-1 in feedlot heifers until d 42 after implant administration; Johnson et al [18,19] and Reinhardt [20] reported that circulating IGF-1increased in implanted steers by d 21 and d 28, respectively, compared to non-implanted steers

  • Results from the present study suggest that elevated IGF-I is not the sole serum-mediated factor which increases signalling for increased mitogenic activity in vitro, given that serum from nutrient abundant and nutrient restricted calves, which differed greatly in IGF-I concentration, did not alter myosin heavy chain (MHC) or phosphomTOR

Read more

Summary

Introduction

During nutritional stress, reduced intake may reduce the efficacy of anabolic implants. Anabolic implants increase average daily gains 15 to 20%, and improve feed efficiency by 6 to 14% in feedlot cattle [1]. When animals first arrive in a feedlot many are in a state of stress and have not yet become accustomed to the environment, feeding routine, other animals, and other factors, especially if they have traveled long distances or have recently been weaned. These cattle are considered at high risk to develop bovine respiratory disease (BRD). In cattle infected with BRD, decreased feed intake, weight loss, and decreased body condition are often observed [3]. Munson et al [4] reported that delaying implant administration in high-risk calves did not alter feedlot performance or the risk of respiratory disease, suggesting that stress brought on by the transition to the feedlot did not diminish the anabolic signals from implanting early in the finishing phase

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.