Abstract

In clinical or epidemiological follow‐up studies, methods based on time scale indicators such as the restricted mean survival time (RMST) have been developed to some extent. Compared with traditional hazard rate indicator system methods, the RMST is easier to interpret and does not require the proportional hazard assumption. To date, regression models based on the RMST are indirect or direct models of the RMST and baseline covariates. However, time‐dependent covariates are becoming increasingly common in follow‐up studies. Based on the inverse probability of censoring weighting (IPCW) method, we developed a regression model of the RMST and time‐dependent covariates. Through Monte Carlo simulation, we verified the estimation performance of the regression parameters of the proposed model. Compared with the time‐dependent Cox model and the fixed (baseline) covariate RMST model, the time‐dependent RMST model has a better prediction ability. Finally, an example of heart transplantation was used to verify the above conclusions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.