Abstract
Let D be an integral domain such that Int(D) ≠ K[X] where K is the quotient field of D. There is no known example of such a D so that Int(D) has finite elasticity. If E is a finite nonempty subset of D, then it is known that Int(E, D) = {f(X) ∈ K[X] | f(e) ∈ D for all e ∈ E} is not atomic. In this note, we restrict the notion of elasticity so that it is applicable to nonatomic domains. For each real number r ≥ 1, we produce a ring of integer-valued polynomials with restricted elasticity r. We further show that if D is a unique factorization domain and E is finite with |E| > 1, then the restricted elasticity of Int(E, D) is infinite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.