Abstract
In this paper we develop, study and test new neighborhood structures for the Hop-constrained Minimum Spanning Tree Problem (HMSTP). These neighborhoods are defined by restricted versions of a new dynamic programming formulation for the problem and provide a systematic way of searching neighborhood structures based on node-level exchanges. We have also developed several local search methods that are based on the new neighborhoods. Computational experiments for a set of benchmark instances with up to 80 nodes show that the more elaborate methods produce in a quite fast way, heuristic solutions that are, for all cases, within 2% of the optimum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.