Abstract
Most successful solution methods for solving large vehicle routing and scheduling problems are based on local search. These approaches are designed and optimized for specific types of vehicle routing problems (VRPs). VRPs appearing in practice typically accommodate restrictions that are not accommodated in classical VRP models, such as time-dependent travel times and driving hours regulations. We present a new construction framework for solving VRPs that can handle a wide range of different types of VRPs. In addition, this framework accommodates various restrictions that are not considered in classical vehicle routing models, but that regularly appear in practice. Within this framework, restricted dynamic programming is applied to the VRP through the giant-tour representation. This algorithm is a construction heuristic which for many types of restrictions and objective functions leads to an optimal algorithm when applied in an unrestricted way. We demonstrate the flexibility of the framework for various restrictions appearing in practice. The computational experiments demonstrate that the framework competes with state of the art local search methods when more realistic constraints are considered than in classical VRPs. Therefore, this new framework for solving VRPs is a promising approach for practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.