Abstract
AbstractThe chase procedure for existential rules is an indispensable tool for several database applications, where its termination guarantees the decidability of these tasks. Most previous studies have focused on the skolem chase variant and its termination analysis. It is known that the restricted chase variant is a more powerful tool in termination analysis provided a database is given. But all-instance termination presents a challenge since the critical database and similar techniques do not work. In this paper, we develop a novel technique to characterize the activeness of all possible cycles of a certain length for the restricted chase, which leads to the formulation of a framework of parameterized classes of the finite restricted chase, called $k$-$\mathsf{safe}(\Phi)$ rule sets. This approach applies to any class of finite skolem chase identified with a condition of acyclicity. More generally, we show that the approach can be applied to the hierarchy of bounded rule sets previously only defined for the skolem chase. Experiments on a collection of ontologies from the web show the applicability of the proposed methods on real-world ontologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.