Abstract

Medical devices such as cardiac defibrillators and pacemakers used to restore heart rhythm and cochlear implants to restore hearing have become well established and are widely used throughout the world as a way in which to improve an individual’s well-being and public health more generally. The application of implantable technology for medical use is typically ‘restorative’, i.e. it aims to restore some deficient ability. Notably, these sophisticated devices form intimate links between technology and the human body. Recent developments in engineering technologies have meant that the ability to integrate silicon with biology is reaching new levels and implantable medical devices that interact directly with the brain are becoming commonplace. Keeping in step with developments of other fundamental technologies, these types of devices are becoming increasingly complex and capable, with their peripheral functionality also continuing to grow. Data logging and wireless, real-time communications with external computing devices are now well within their capabilities and are becoming standard features, albeit without due attention to inherent security and privacy implications. This chapter explores the state-of-the-art of invasively implantable medical technologies and shows how cutting edge research is feeding into devices being developed in a medical context. Here, the focus of the analysis is on four technologies-pacemakers and cardiac defibrillators, cochlear implants, deep brain stimulators and brain computer interfaces for sight restoration.KeywordsDeep Brain StimulationMultiple System AtrophyCochlear ImplantBrain Computer InterfaceTremor FrequencyThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call