Abstract

11582 Background: The onset and maintenance of cancer frequently involves gain of oncogenic function along with loss of tumor suppression. PTEN is a well-characterized tumor suppressor gene that is lost or mutated in many human cancers including ~50% of metastatic castration-resistant prostate cancer (mCRPC). Reintroduction of functional PTEN for mCRPC treatment has proven difficult. Methods: PTEN mRNA was synthesized by in vitro transcription method and modified with ARCA capping and enzymatic polyadenylation, and then substituted with Pseudo-UTP, 5’-Methyl-CTP. A robust self-assembly approach was employed to prepare PTEN mRNA nanoparticles (NPs) using cationic lipid-like compound G0-C14 and PLGA polymer coated with lipid-PEG shell. PTEN expression in tumors and PI3K-AKT pathway were confirmed by IHC and western blot, respectively. Apoptosis was checked by flow cytometry and Tunel assays. In vivo toxicity was studied by hematologic and histologic tests, and immune response. Results: We successfully restored PTEN mRNA to PTEN-null prostate cancer (PCa) cells via systemic delivery of mRNA NPs. These mRNA NPs are stable in serum, demonstrate minimal toxicity, and provide highly effective transfection in PCa cells (substantially higher HA-PTEN expression than plasmid PTEN transfection) and PCa xenograft tumors, leading to ~85% inhibition of tumor cell growth in vitro and in vivo. We also confirm mRNA NP-mediated systemic restoration of PTEN function in PTEN-null PCa and delineate its tumor suppression through inhibition of the PI3K-AKT pathway and enhancement of apoptosis. Conclusions: The work provides proof of principle for the systemic reintroduction of mRNA-based tumor suppressor genes to tumors in vivo. Because PTEN loss is frequent in late-stage PCa, this approach may have feasibility in this patient population. Considering the strong potential of mRNA therapy and the lack of systemic studies of in vivo mRNA transfection of tumors, this study sheds light on the useful application of NP-mediated mRNA delivery for validating tumor suppressors (e.g., PTEN) as a therapeutic target in cancer treatment where loss of a tumor suppressor contributes to the underlying genetic mechanism of cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call