Abstract

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive human malignancy in which the transforming growth factor beta (TGF-beta) signal transducer, Smad4, is commonly mutated or deleted. BxPC3 human pancreatic cancer cells exhibit a homozygous deletion of the Smad4 gene, yet are growth inhibited by TGF-beta1. In the present study, we sought to determine whether reintroduction of Smad4 into BxPC3 cells alters their behavior in vitro and in vivo. Sham transfected and Smad4 expressing BxPC3 cells exhibited similar responses to TGF-beta1 with respect to p21 upregulation, hypophosphorylation of the RB protein, Smad2 phosphorylation, and Smad2/3 nuclear translocation. TGF-beta1 did not alter p27 expression, and silencing of p21 with an appropriate siRNA markedly attenuated TGF-beta1-mediated growth inhibition. Nonetheless, the presence of Smad4 was associated in vitro with a more prolonged doubling time, enhanced sensitivity to the growth inhibitory actions of exogenous TGF-beta1, and a more flattened cellular morphology. In vivo, Smad4 expression resulted in delayed tumor growth and decreased cellular proliferation, without effects on either apoptosis or angiogenesis. These findings indicate that, in spite of the absence of Smad4, growth inhibition in BxPC3 cells by TGF-beta1 is dependent on p21 upregulation and maintenance of RB in a hypophosphorylated, active state. Moreover, the presence of a functional Smad4 attenuates the capacity of BxPC3 cells to proliferate in vivo. However, this effect is transient, indicating that Smad4 growth inhibitory actions are circumvented in the later stages of pancreatic tumorigenicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.