Abstract

Over the last few years, a growing number of researchers from varied disciplines have been utilizing Markov random fields (MRF) models for developing optimal, robust algorithms for various problems, such as texture analysis, image synthesis, classification and segmentation, surface reconstruction, integration of several low level vision modules, sensor fusion and image restoration. However, no much work has been reported on the use of Simulated Annealing (SA) and Iterative Conditional Mode (ICM) algorithms for maximum a posteriori estimation in image restoration problems when severe blurring is present. In this paper we examine the use of compound Gauss–Markov random fields (CGMRF) to restore severely blurred high range images. For this deblurring problem, the convergence of the SA and ICM algorithms has not been established. We propose two new iterative restoration algorithms which can be considered as extensions of the classical SA and ICM approaches and whose convergence is established. Finally, they are tested on real and synthetic images and the results compared with the restorations obtained by other iterative schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.