Abstract

Molecular targets to reduce muscle weakness and atrophy due to oxidative stress have been elusive. Here we show that activation of Sarcoplasmic Reticulum (SR) Ca2+ ATPase (SERCA) with CDN1163, a novel small molecule allosteric SERCA activator, ameliorates the muscle impairment in the CuZnSOD deficient (Sod1-/-) mouse model of oxidative stress. Sod1-/- mice are characterized by reduced SERCA activity, muscle weakness and atrophy, increased oxidative stress and mitochondrial dysfunction. Seven weeks of CDN1163 treatment completely restored SERCA activity and reversed the 23% reduction in gastrocnemius mass and 22% reduction in specific force in untreated Sod1-/- versus wild type mice. These changes were accompanied by restoration of autophagy protein markers to the levels found in wild-type mice. CDN1163 also reversed the increase in mitochondrial ROS generation and oxidative damage in muscle tissue from Sod1-/- mice. Taken together our findings suggest that the pharmacological restoration of SERCA is a promising therapeutic approach to counter oxidative stress-associated muscle impairment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call