Abstract

Mutations in the gene for Retinitis Pigmentosa GTPase Regulator (RPGR) cause the X-linked form of inherited retinal degeneration, and the majority are frameshift mutations in a highly repetitive, purine-rich region of RPGR known as the OFR15 exon. Truncation of the reading frame in this terminal exon ablates the functionally important C-terminal domain. We hypothesized that targeted excision in ORF15 by CRISPR/Cas9 and the ensuing repair by non-homologous end joining could restore RPGR reading frame in a portion of mutant photoreceptors thereby correcting gene function in vivo. We tested this hypothesis in the rd9 mouse, a naturally occurring mutant line that carries a frameshift mutation in RPGRORF15, through a combination of germline and somatic gene therapy approaches. In germline gene-edited rd9 mice, probing with RPGR domain-specific antibodies demonstrated expression of full length RPGRORF15 protein. Hallmark features of RPGR mutation-associated early disease phenotypes, such as mislocalization of cone opsins, were no longer present. Subretinal injections of the same guide RNA (sgRNA) carried in AAV sgRNA and SpCas9 expression vectors restored reading frame of RPGRORF15 in a subpopulation of cells with broad distribution throughout the retina, confirming successful correction of the mutation. These data suggest that a simplified form of genome editing mediated by CRISPR, as described here, could be further developed to repair RPGRORF15 mutations in vivo.

Highlights

  • Retinitis pigmentosa (RP) is a heterogenous group of inherited retinal diseases caused by a progressive degeneration of rod and cone photoreceptors that results in the eventual loss of vision

  • Because the distal ends of outer segments are continuously shed and phagocytosed by apposing retinal pigment epithelia (RPE), phototransduction proteins must be continuously produced in the inner segment and trafficked across the connecting cilium

  • Founders were screened later via immunofluorescence staining of the retina for in-frame RPGRORF15 protein to detect productive genome editing events

Read more

Summary

Introduction

Retinitis pigmentosa (RP) is a heterogenous group of inherited retinal diseases caused by a progressive degeneration of rod and cone photoreceptors that results in the eventual loss of vision. The majority of mutations causing XLRP have been identified as loss-of-function alleles in the gene encoding retinitis pigmentosa GTPase regulator (RPGR) [1,2,3,4]. Because the distal ends of outer segments are continuously shed and phagocytosed by apposing retinal pigment epithelia (RPE), phototransduction proteins must be continuously produced in the inner segment and trafficked across the connecting cilium. This process is highly regulated and involves several proteins associated with retinal disease, including RPGR, RPGRIP1, and CEP290 [6]. Similar phenotypes are observed in other animal models where connecting cilia proteins are mutated or absent [9,10,11]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.