Abstract
Convex total variation (TV) regularization models have been widely used in remote sensing image restoration problems; however, these models tend to produce staircase effects. We consider a nonconvex second-order TV regularization model with linear constraints for remote sensing image restoration. To solve the nonconvex second-order TV regularization model, we propose an efficient alternating minimization algorithm based on generalized iterated shrinkage algorithm and alternating direction method of multipliers. Experimental results demonstrate the effectiveness of the proposed model, which can reduce staircase effects while preserving edges. In terms of signal-to-noise ratio and structural similarity index measure, the experimental results show that our proposed model and algorithm can give better performance compared with some state-of-the-art methods.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.