Abstract

In mammals there are two sets of peripheral arterial chemoreceptors, the carotid bodies innervated by the sinus branch of the glossopharyngeal nerve and the aortic bodies innervated by the vagus nerves. The afferent impulse discharge from both receptors increases during hypoxia and there is a reflexly mediated increase in ventilation (hypoxic hyperventilation). In the present study we tested this response by exposing anesthetized cats to decreased inspired O 2 concentration before and up to 315 days after bilateral resection of the carotid bodies. Acutely after removing the carotid bodies, hypoxic hyperventilation was abolished. This observation supports the view that the reflex pathway from the aortic body receptors normally contributes minimally to hypoxic hyperventilation. Subsequently, there was a restoration of hypoxic hyperventilation. Restoration was significant 30–43 days after removing the carotid bodies, it reached 70% of the preoperative value at 93–111 days and was essentially complete in terminal experiments 260–315 days after carotid body resection. In terminal experiments, hypoxic hyperventilation was not affected by recutting the regenerated carotid sinus nerves but was abolished completely by bilateral transection of the cervical vagosympathetic trunks. The restored ventilatory response was due predominantly to an increase in rate of breathing while an increase in tidal volume was predominant before carotid body resection. Resting ventilation breathing room air was not consistently decreased after carotid body resection while expired CO 2 was elevated from day 20 to day 111 and at the preoperative level in terminal experiments. It is concluded that restoration of hypoxic hyperventilation in the cat after carotid body resection is mediated by the reflex pathway from aortic body chemoreceptors. The possible contribution of chemo-receptive regenerated carotid sinus nerve axons was excluded. It is suggested that restoration may be a consequence of the central reorganization of chemoreceptor afferent pathways consequent to interruption of the carotid body reflex pathway and that as a result the ‘gain’ of the aortic body ventilatory chemoreflex is enhanced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call