Abstract

F-prime derivatives of the Escherichia coli strain CR34 bearing the thermosensitivity mutation dnaB43 display low levels of plasmid-determined superinfection inhibition in conjugational crosses at 30 C. Salt-mediated phenotypic suppression of this temperature sensitivity fails to restore normal levels of inhibition, indicating its alteration is not a secondary effect of dnaB43 a-tion on growth or deoxyribonucleic acid syntheiss. Superinfection inhibition is fully restored in mutant cells made merodiploid for the dnaB region by introduction of the F' dnaB-+ plasmid F134-1. dnaB43-bearing strains lysogenized with P1 phage contribution dnaB-analogue protein show eight to nine times more superinfection inhibition than do the same cells carrying P1 prophage repressed dnaB-analogue protein production. Taken together, this evidence suggests a direct causal relationship between dnaB43 and the altered superinfection inhibition phenotype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.