Abstract
Receptor signalling to phospholipase D (PLD) in human embryonic kidney (HEK) cells stably expressing the m3 muscarinic acetylcholine receptor apparently involves Rho proteins. Since phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] has been recognized as an essential cofactor for PLD activity and since activated Rho proteins have been reported to stimulate the synthesis of PtdIns(4,5)P2, we studied whether in HEK cells PLD activity is regulated by PtdIns(4,5)P2 and, in particular, whether PtdIns(4,5)P2 can restore PLD activity inhibited by Clostridium difficile toxin B, which inactivates Rho proteins. Addition of MgATP to permeabilized HEK cells increased basal PLD activity and potentiated PLD stimulation by the stable GTP analogue, guanosine 5'-[gamma-thio]triphosphate (GTP[S]), concomitant with a large increase in PtdIns(4,5)P2. On the other hand, neomycin, which binds to PtdIns(4,5)P2, inhibited basal and GTP[S]-stimulated PLD activities. Addition of PtdIns(4,5)P2 increased PLD activity in HEK cell membranes by 2-3-fold, whereas various other phospholipids were ineffective. Prior treatment of HEK cells with toxin B reduced the level of PtdIns(4,5)P2, measured either in intact cells or in membrane preparations, by about 40%. In membranes of toxin-B-treated cells, basal and GTP[S]-stimulated PLD activities were reduced, when measured with exogenous phosphatidylcholine as enzyme substrate. Inclusion of PtdIns(4,5)P2 with phosphatidylcholine in the substrate vesicles or addition of PtdIns(4,5)P2 fully restored basal and GTP[S]-stimulated PLD activities in membranes of toxin-B-treated cells. In conclusion, the data indicate that PtdIns(4,5)P2 is an essential cofactor for PLD activity in HEK cells and that inhibition of PLD activity by the Rho-inactivating toxin B is apparently caused by depletion of the PLD cofactor, PtdIns(4,5)P2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.