Abstract

HaCaT cells have been widely used as undifferentiated epidermal keratinocytes, since these non-tumorigenic cells can be readily maintained in conventional medium and partly retain epidermal differentiation potential upon stimulation with high concentration of calcium. In contrast to primary epidermal keratinocytes, however, these cells never form tight junction (TJ), a specific structure in highly differentiated keratinocytes, solely by the differentiation stimulation. Here, we show that HaCaT cells secrete a considerable amount of highmobility group box-1 protein (HMGB1), one of major inflammatory mediator, which appeared to be responsible, at least in part, for such aberrant differentiation response. So far, inhibition of c-Jun N-terminal kinase (JNK) in high calcium medium has been supposed to be the only way to induce TJ formations in HaCaT cells; however, SP600125, a potent inhibitor of JNK showed cytostatic effects and clearly attenuated epidermal differentiation and stratification. In contrast, dipotassium glycyrrhizate (GK2), a soluble analogue of HMGB1-blocker Glycyrrhizin, down-regulated interferon-β, a typical inflammatory cytokine induced by secreted HMGB1, and accelerated differentiation responses to the calcium treatment in these cells. In addition, GK2-treatmenrt resulted in the formation of double cell layers in cultured HaCaT cells, where the stratified upper cells transiently accumulated TJ proteins at the cell-cell contact sites. These results highlight the importance of attenuation of secreted HMGB1-signals in cultured HaCaT cells for studies of functional keratinocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call