Abstract

Porous low-k dielectrics are susceptible to damages by steps such as etch, ash, and CMP in the BEOL process flow. Such damages degrade the structural and electrical properties of low-k materials. To uphold the value of integrating low-k dielectrics, restoration processes are needed to repair such damages. In this work, UV-assisted silylation is used to repair damages and restore properties of porous low-k dielectrics. The repair process is able to restore carbon content, as indicated by the increase in water contact angle (WCA), and restore the electrical properties, as shown by the decrease in dielectric constant (k) and increase in break-down electrical field based on blanket-film data. On structured wafers, the post-etch repair process effects a 4–6% reduction in RC when compared to without repair. The same UV-assisted platform may be used to effect pore sealing to prevent metals used in BEOL metallization from penetrating into porous low-k materials. On structured wafers, the pore-sealing process is able to reduce Mn penetration into porous low-k when ALD MnN is used as the copper barrier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.