Abstract

AbstractDesertification is reversible and can often be prevented by adopting measures to control the causal processes. Desertification has generally decreased in most of the arid and semiarid areas of China during the last few decades because of the restoration of degraded vegetation and soil nutrients. However, little is known about the responses of soil nutrients in different particle‐size fractions to the restoration process and about the importance of this response to the restoration of bulk‐soil nutrients. In this study, we separated bulk‐soil samples in different sieve fractions: coarse‐fine sand (2·0–0·1 mm), very fine sand (0·10–0·05 mm) and silt + clay (<0·05 mm) fractions. Soil organic carbon (SOC), N, P and K contents stored in the silt + clay were greater than the contents of non‐protected nutrients in the coarser fractions. During the restoration of desertified land, the content and stability of bulk‐soil SOC, total N and P and available N, P and K increased with increasing nutrient contents in all fractions. Topsoil nutrients stored in coarse‐fine sand and very fine sand fractions were more sensitive than those stored in the silt + clay fraction to the fixation of mobile sandy lands and vegetation recovery. The changes of bulk‐soil nutrients and their stability were decided by the soil nutrients associated with all particle‐size fractions. Path analysis revealed that SOC and total nutrients in very fine sand and available nutrients in coarse‐fine sand were the key factors driving the soil recovery. These results will help us understand soil recovery mechanisms and evaluate the degree of recovery. Copyright © 2015 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.