Abstract

Aging-related episodic memory decline is often attributed to insufficient encoding of new information, although the underlying neural processes remain elusive. We here tested the hypothesis that impaired memory consolidation contributes to aging-related memory decline. To this end, we used resting state functional magnetic resonance imaging in healthy young and older adults and investigated neural network connectivity underlying episodic memory consolidation and the effects of aging thereon. During postencoding rest, connectivity increased in subregions of temporobasal and temporo-occipital networks but decreased in a precuneal network. These connectivity changes predicted subsequent memory performance thereby constituting functional correlates of early memory consolidation. Furthermore, these consolidation-related regional connectivity changes partially overlapped with encoding-related neural activity changes, suggesting a close relationship between encoding- and consolidation-related activity. Older when compared to young participants failed to increase connectivity in the right lingual gyrus as part of an extended default mode network during consolidation, thereby providing a functional correlate for spatial contextual memory deficits. In conclusion, results are consistent with previous reports of persistent activity in regions mediating memory encoding as a core mechanism underlying episodic memory consolidation. Our data extend previous findings suggesting that aging-related memory decline results from a reduction of consolidation processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call