Abstract

Along an elevational gradient on SW Utah, sagebrush lizards ( Sceloporus graciosus) exhibit an unexpected pattern of growth. Lizards from a high elevation population grow faster than lizards from two populations at lower elevations despite shorter daily and seasonal activity. Results from a common environment study of growth suggest that the differences in growth are not due to adaptation to local environmental conditions. In this study, I test the hypothesis that higher growth rates in lizards from high elevation may be attributable to reduced resting metabolic expenditure compared to that of lizards from populations at two lower elevations. Resting metabolic rates were measured for individuals from each of the study populations across different times of day and over a broad range of temperatures. Under the same laboratory conditions, field-caught lizards from the high elevation population exhibited lower metabolic rates when compared to lizards from lower elevations. Daily resting metabolic expenditures were calculated using the observed metabolic rates coupled with estimates of daily activity. Daily resting metabolic expenditure was 50% greater for individuals from the two lower elevation populations, which could result in 12.5% more energy that could be potentially allocated to growth for lizards from high elevation. Such energetic savings may be able to explain differences in the patterns of growth observed in nature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.