Abstract

Ionic currents in the resting membrane of locust jumping muscle and their modulation by the biogenic amine octopamine were investigated using the two-electrode voltage clamp. A Cl- conductance, GCl,H, which slowly activates on hyperpolarization, can be induced by raising the intracellular Cl- concentration via diffusion of Cl- ions from the recording electrode. The instantaneous I-V characteristic of the current, ICl,H, is linear and reverses at the same potential as the gamma-aminobutyric acid (GABA)-mediated Cl- current. Elevation of [Cl-]i increases the maximal steady state GCl,H (Gmax) and shifts the activation curve of GCl,H to more positive potentials. Octopamine enhances GCl,H, mainly by increasing Gmax. Octopamine also lowers the resting K+ conductance (GK,r). It reduces a hyperpolarization-activated component (GK,H) of GK,r, mainly by decreasing Gmax. Octopamine also transiently stimulates the Na+/K+ pump although this effect was not always seen. The effects of octopamine on the Cl- and K+ conductances are mimicked by membrane permeant cyclic nucleotides. The modulation of GK,r, but not that of GCl,H, seems to be mediated by protein kinase A (PKA). PKA seems to be constitutively activated as indicated by the pronounced increase in GK,r induced by a PKA inhibitor, H89. The properties of GCl,H and related Cl- conductances in invertebrate and vertebrate neurons are compared. GCl,H probably supports efflux of Cl- ions accumulating in the fibers during synaptic inhibition. Octopamine's multiple modulation at the level of the muscle cell membrane, in conjunction with previously established effects on synaptic transmission and excitation-contraction coupling, are suited to support strong and rapid muscle contractions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.