Abstract
Quantitative electroencephalography has contributed significantly to elucidating the neurobiologic mechanisms of attention-deficit hyperactivity disorder. The most consistent and robust electroencephalographic disturbance in attention-deficit hyperactivity disorder has been abnormally increased theta band during resting conditions. Separate research using attention-demanding tests has elucidated cognitive disturbances that differentiate attention-deficit hyperactivity disorder. This study attempts to integrate electroencephalographic and neuropsychological indices to determine whether cognitive performance is specifically related to increased theta. Theta activity was recorded during a resting condition for 46 children/adolescents with attention-deficit hyperactivity disorder and their sex- and age-matched control subjects. Accuracy and reaction time during an auditory oddball and a visual continuous performance test were then recorded. Compared with control subjects, the attention-deficit hyperactivity disorder group manifested significantly increased (primarily left) frontal theta. Furthermore, the attention-deficit hyperactivity disorder group scored significantly delayed reaction time and decreased accuracy in both tasks. Correlation analysis revealed a significant relationship between frontal (primarily left) theta and oddball accuracy for the attention-deficit hyperactivity disorder group compared with a significant relationship between posterior (primarily right) theta and reaction time in the continuous performance test for the control group. These results indicate that spatial neurophysiologic deficits in attention-deficit hyperactivity disorder may be related to disturbances in signal detection. This observation has important implications for the role of trait-like biologic deficits in attention-deficit hyperactivity disorder predicting performance in information processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.