Abstract

研究目的关于餐厅的文本信息, 如在线评论和食品分类, 对于消费者的购买决策产生至关重要。然而, 先前的餐厅推荐研究未能有效利这些文本信息去预测消费者喜好。本研究提出了一种新颖的餐厅推荐模型, 以有效估计消费者对多个餐厅属性的评估行为。研究方法我们从 Yelp.com 收集了来自25,369名消费者对 46,613 家餐厅的 1,206,587 条评论。利用这些数据, 我们通过结合消费者身份和在线消费者评论生成了消费者偏好向量。然后, 我们结合了餐厅身份和食品分类来生成餐厅信息向量。最后, 考虑到餐厅属性向量, 本研究调查了消费者偏好和餐厅信息向量之间的非线性交互关系。研究发现我们发现, 所提出的推荐模型相比于之前最先进的模型表现出更优秀的性能, 这表明结合消费者和餐厅的各种文本信息是预测消费者喜好的基本因素。研究创新/价值据我们所知, 这是第一项利用来自真实在线餐厅平台的文本信息开发个性化餐厅推荐模型的研究。本研究还提出了胜过最先进模型的深度学习机制。本研究的结果可以降低探索消费者行为的成本并支持有效的购买决策。

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.