Abstract
Restarting is a technique frequently employed in randomized algorithms. After some number of computation steps, the state of the algorithm is reinitialized with a new, independent random seed. Luby et al. (Inf. Process. Lett. 47(4), 173–180, 1993) introduced a universal restart strategy. They showed that their strategy is an optimal universal strategy in the worst case. However, the optimality result has only been shown for discrete processes. In this work, it is shown that their result does not translate into a continuous setting. Furthermore, we show that there are no (asymptotically) optimal strategies in a continuous setting. Nevertheless, we obtain an optimal universal strategy on a restricted class of continuous probability distributions. Furthermore, as a side result, we show that the expected value under restarts for the lognormal distribution tends towards 0. Finally, the results are illustrated using simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.