Abstract

Nickel-rich cathode materials are a popular cathode for high energy lithium ion batteries in the current and next generation of electric vehicles. While nickel-rich cathodes offer high energy density, their cycle-life is compromised due to several factors directly related to their (de)lithiation behavior. At high state of charge the nickel-rich cathode experiences a hexagonal-hexagonal transition which is accompanied by drastic changes in the unit cell parameters. This phenomenon is detrimental for cycle-life of a battery cell. This work elucidates on the effect of storing LiNi0.8Mn0.1Co0.1O2‖Graphite cells at 95 % state of charge corresponding to the above-mentioned transition for 10 h every six cycles. The results are compared to cells cycled without a rest at high state of charge and cells cycled to 100 % state of charge. Analysis of the obtained cycling data shows that resting lithium ion cells based nickel-rich cathode based cells is detrimental leading to higher impedance growth and capacity decay than cycling to 100 % state of charge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call