Abstract

N-methyl-D-aspartate receptors (NMDARs) are critical to synaptogenesis, neural circuitry and higher cognitive functions such as learning and memory. A hallmark feature of NMDARs is an early postnatal developmental switch from primarily GluN2B- to GluN2A-containing. Although the switch in phenotype has been an area of intense interest for two decades, the mechanisms that trigger it, and the link between experience and the switch are unclear. Here we show a novel role for the transcriptional repressor REST in the developmental switch of synaptic NMDARs. REST is activated at a critical window of time and acts via epigenetic remodeling to repress grin2b expression and properties at rat hippocampal synapses. Knockdown of REST in vivo prevented the decline in GluN2B and developmental switch in NMDARs. Notably, maternal deprivation impaired REST activation and acquisition of the mature NMDAR phenotype. Thus, REST is essential for experience-dependent fine-tuning of genes involved in synaptic plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call