Abstract
In recent years, the performances of face recognition have been improved significantly by using convolution neural networks (CNN) as the feature extractors. On the other hands, in order to avoid spreading COVID-19 virus, people would wear mask even when they want to pass the face recognition system. Thus, it is necessary to improve the performance of masked face recognition so that users could utilize face recognition methods more easily. In this paper, we propose a feature extraction backbone named ResSaNet that integrates CNN (especially Residual block) and Self-attention module into the same network. By capturing the local and global information of face area simultaneously, our proposed ResSaNet could achieve promising results on both masked and non-masked testing data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.