Abstract

A high‐responsivity photo‐field‐effect transistor (photo‐FET) with a metal‐oxide‐semiconductor (MOS) structure is a promising technology for low‐intensity light detection with its high gain and low operation voltage. To enhance their responsivity, the equivalent oxide thickness (EOT) scaling is one of the effective solutions, which is a common technology to improve the electrical properties of MOSFETs using higher‐k insulators. Herein, the EOT scaling effect on the optoelectrical characteristics of photo‐FETs using Al2O3 and Al2O3/HfO2 gate stacks is investigated. Thanks to the EOT scaling effect introducing Al2O3/HfO2, only the transconductance of the photo‐FET is enhanced without any significant change in the photovoltaic effect and cavity effect. As a result, its responsivity is improved by up to 1.7 times. The results give a basic strategy of the EOT scaling effect for photo‐FETs; thus, the EOT scaling with a higher‐k insulator is a powerful solution for the high‐performance InGaAs photo‐FET requiring high responsivity in the short‐wavelength infrared range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.