Abstract

We demonstrate here that surface wetting transitions and contact angle hysteresis can be significantly altered by manipulating the droplet–surface interaction, which has never been reported before. The dynamic wetting behavior of a pressed water droplet on responsive polymer brushes-modified anodized alumina with pre-modified dilute initiator is shown. The wetting transition between superhydrophobicity and hydrophilicity can or cannot be achieved depending on the responsiveness between droplets of different pH, the concentrations of electrolytes and the environmental temperature and surface grafted stimuli-responsive polymer brushes. The contact angle changes are rather apparent, giving the surface double-faced wetting characteristics. The responsive surface composition regulated wetting will be very useful in understanding wetting theory, and will be helpful experimentally in designing smart surfaces in, for example, microfluidic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.