Abstract

Deep brain stimulation (DBS) has been noted for its potential to suppress epileptic seizures. To date, DBS has achieved mixed results as a therapeutic approach to seizure control. Using a computational model, we demonstrate that high-complexity, biologically-inspired responsive neuromodulation is superior to periodic forms of neuromodulation (responsive and non-responsive) such as those implemented in DBS, as well as neuromodulation using random and random repetitive-interval stimulation. We configured radial basis function (RBF) networks to generate outputs modeling interictal time series recorded from rodent hippocampal slices that were perfused with low Mg²⁺/high K⁺ solution. We then compared the performance of RBF-based interictal modulation, periodic biphasic-pulse modulation, random modulation and random repetitive modulation on a cognitive rhythm generator (CRG) model of spontaneous seizure-like events (SLEs), testing efficacy of SLE control. A statistically significant improvement in SLE mitigation for the RBF interictal modulation case versus the periodic and random cases was observed, suggesting that the use of biologically-inspired neuromodulators may achieve better results for the purpose of electrical control of seizures in a clinical setting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call