Abstract

Polyelectrolyte/surfactant (P/S) mixtures find many applications but are static in nature and cannot be reversibly reconfigured through the application of external stimuli. Using a new type of photoswitchable surfactants, we use light to trigger property changes in mixtures of an anionic polyelectrolyte with a cationic photoswitch such as electrophoretic mobilities, particle size, as well as their interfacial structure and their ability to stabilize aqueous foam. For that, we show that prevailing hydrophobic intermolecular interactions can be remotely controlled between poly(sodium styrene sulfonate) (PSS) and arylazopyrazole tetraethylammonium bromide (AAP-TB). Shifting the chemical potential for P/S binding with E/Z photoisomerization of the surfactants can reversibly disintegrate even large aggregates (>4 μm) and is accompanied by a substantial change in the net charging state of PSS/AAP-TB complexes, e.g., from negative to positive excess charges upon light irradiation. In addition to the drastic changes in the bulk solution, also at air-water interfaces, the interfacial stoichiometry and structure change drastically on the molecular level with E/Z photoisomerization, which can also drive the stability of aqueous foam on a macroscopic level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.