Abstract

Stratagems of drug delivery are important for disease treatment and other biomedical areas. In this study, a novel stratagem is presented for versatile and controllable drug delivery by integrating photoresponsive drug delivery microspheres (PDDMs) into pyramid microneedle (MN) arrays. The PDDMs, containing black-phosphorus (BP) and poly (N-isopropylacrylamide) (pNIPAM), are generated by a flexible capillary microfluidic method. Benefiting from the high watercontentof the pNIPAM hydrogel, various bioactive substances can be loaded and maintain biological activity. Furthermore, due to the near-infrared (NIR) absorption and conversion capabilities of the contained BP, the PDDMs can increase temperature, shrink volume, and release their encapsulated bioactives under the trigger of biocompatible NIR. In addition, as the PDDMs are stuffed into the solid MN arrays of porous ethoxylated trimethylolpropane triacrylate (ETPTA), the composited PDDMs-MNs system has enough mechanical strength to penetrate into the skin and can deliver drugs underneath the skin uniformly. Based on the resultant PDDMs-MNs, it is demonstrated that insulin can be controllably released to adjust blood glucose levels of streptozotocin (STZ)-induced diabetic mice. Thus, it is believed that the PDDMs-MNs can act as an excellent drugs delivery system and will find many practical values in clinical medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.