Abstract

New interactive video applications are increasingly emerging over the Internet; these interactive applications are characterized by high bandwidth requirements that fluctuates depending on end-user actions (e.g. less bandwidth is usually needed for stationary scenes). More importantly, this interactive class of services also involves a requirement for high responsiveness (i.e. low latency) from the network, in order to respond in real-time to end-user actions. One emerging service of this nature is 360° video streaming; another example is cloud-based gaming services. In this paper, we focus specifically on JPIP (JPEG 2000 Interactive Protocol) applications that support remote interactive video browsing with dynamic pan and zoom capabilities, as a highly representative example of the interactive service class. Existing network communication services are mostly agnostic to latency implications, and hence are not well adapted to such interactive applications. Meanwhile, explicit resource reservation protocols have not been widely deployed, and do not consider the time-varying dependencies that naturally arise in interactive applications. In this work, we leverage software defined networking (SDN) principles to support a proposed “interactive service” class. The main contributions of this work are a network-exposed application programming interface (API) that provides visibility into the state of the network, an SDN-assisted congestion control algorithm that utilizes network state information to achieve the desired low latency and high bandwidth utilization requirements, and a fair resource assignment algorithm that shares available bandwidth among interactive and non-interactive traffic dynamically – all without a reservation protocol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call