Abstract
The rapid development of advanced optical imaging methods including stimulated emission depletion (STED) and fluorescence lifetime imaging microscopy (FLIM) has provided powerful tools for real-time observation of submicrometer biotargets to achieve unprecedented spatial and temporal resolutions. However, the practical imaging qualities are often limited by the performance of fluorescent probes, leading to unsatisfactory results. In particular, long-term imaging of nucleic acids in living cells with STED and FLIM remained desirable yet challenging due to the lack of competent probes combining targeting specificity, biocompatibility, low power requirement, and photostability. In this work, we rationally designed and synthesized a nanosized carbonized polymer dot (CPD) material, CPDs-3, with highly efficient and photostable emission for the super-resolution and fluorescence lifetime imaging of nucleic acids in living cells. The as-fabricated nanoprobe showed responsive emission properties upon binding with nucleic acids, providing an excellent signal-to-noise ratio in both spatial and temporal dimensions. Moreover, the characteristic saturation intensity value of CPDs-3 was as low as 0.68 mW (0.23 MW/cm2), allowing the direct observation of chromatin structures with subdiffraction resolution (90 nm) at very low excitation (<1 μW) and depletion power (<5 mW). Owing to its low toxicity, high photonic efficiency, and outstanding photostability, CPDs-3 was capable of performing long-term imaging both with STED and FLIM setups, demonstrating great potential for the dynamic study of nucleic acid functionalities in the long run.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.